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Abstract

Lithium-ion batteries (LIB) as energy supply and storage systems have been widely used in electronics, electric vehicles,
and utility grids. However, there is an increasing demand to enhance the energy density of LIB. Therefore, the
development of new electrode materials with high energy density becomes significant. Although many novel materials
have been discovered, issues remain as (1) the weak interaction and interface problem between the binder and the
active material (metal oxide, Si, Li, S, etc.), (2) large volume change, (3) low ion/electron conductivity, and (4) self-
aggregation of active materials during charge and discharge processes. Currently, the binder-free electrode serves as a
promising candidate to address the issues above. Firstly, the interface problem of the binder and active materials can be
solved by fixing the active material directly to the conductive substrate. Secondly, the large volume expansion of active
materials can be accommodated by the porosity of the binder-free electrode. Thirdly, the ion and electron conductivity
can be enhanced by the close contact between the conductive substrate and the active material. Therefore, the binder-
free electrode generally exhibits excellent electrochemical performances. The traditional manufacture process contains
electrochemically inactive binders and conductive materials, which reduces the specific capacity and energy density of
the active materials. When the binder and the conductive material are eliminated, the energy density of the battery can
be largely improved. This review presents the preparation, application, and outlook of binder-free electrodes. First,
different conductive substrates are introduced, which serve as carriers for the active materials. It is followed by the binder-
free electrode fabrication method from the perspectives of chemistry, physics, and electricity. Subsequently, the
application of the binder-free electrode in the field of the flexible battery is presented. Finally, the outlook in terms of
these processing methods and the applications are provided.
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Introduction
The energy crisis and environmental issues have driven the
development of renewable energy and new environmentally
friendly energy storage systems. Because of the intermittent
problem of renewable energy sources such as wind energy,
water energy, and solar energy, batteries are considered to
be important energy storage systems [1–3]. There is an in-
creasing demand for reliable and efficient energy storage

devices. Lithium-ion batteries (LIBs) have attracted much
attention due to their high energy and power density, high
cell voltage, wide operating temperature range, and long
cycle life [4]. Nowadays, the traditional process of the bat-
tery preparation uses a polyvinylidene fluoride (PVDF) as a
binder to fix the conductive agent and the active materials
on the current collector by a coating method [5, 6]. With
the demand for the LIBs with higher capacity and smaller
size, both the development of active materials with high
specific capacity and the reduction of inactive materials in
the cell are important. The methods to reduce the inactive
materials are as following. Firstly, the traditional binder can
be replaced by the conductive binder, for example, pyrene-
based polymer and polyfluorene-conjugated polymer. These
polymers are naturally conductive, and their side-chain or
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backbone is modified to increase the adhesion [7–10]. The
conductive binder serves as conductive agent. Therefore,
the use of inactive carbon in the cell can be reduced. How-
ever, the weak interfacial interaction between these binders
(both PVDF and new developed binders) and active mate-
rials (metallic oxide, Si, Sn, Li, S, etc.) results in the particles
self-aggregate or/and isolation from current collector.
Therefore, these new materials with high capacity show re-
duced battery performance [11–15]. Secondly, advanced
conductive substrates, for example, carbon cloth, graphene,
and Ni foam, are investigated, where active materials can
be anchored on the special adhesion sites of substrates. The
adhesions between active materials and substrates are
achieved by strong chemical and/or physical bonding,
which significantly improves the integrity of electrodes.
Moreover, this process potentially removes both binder and
conductive carbon additives. Therefore, the energy density
can be largely improved [16, 17] (Fig. 1).
Great deal of research has demonstrated the numerous

advantages of binder-free electrodes [18–21]. By immobiliz-
ing the active materials onto the corresponding electron-
conductive substrate, the interfacial problem of binder and
active materials can be resolved due to the absence of or-
ganic binder covering on the active materials surface [22,
23]. Active materials firmly adhere on the conductive sub-
strate, which highly improves the electron conductivity.
The properties of supporting materials, for example, porous

structures, facilitate electrolyte penetration, and ion diffu-
sion [24]. Besides, the large surface area has the benefit for
the full usage of active materials and the transportation of
Li-ions. Moreover, the active material is generally uniformly
anchored on the conductive substrate, which can effectively
prevent the agglomeration of the nanoparticles and reduce
the volume expansion during the repeated cycling process.
The binder-free electrodes generally show high Li+ and
electron conductivity, decent electrolyte wettability and
large volume expansion space, and strong bonding strength.
Therefore, the binder-free electrodes exhibit better capacity,
cycling, and rate performances than the PVDF/active mate-
rials/carbon black system. Specifically, the cycle life of the
novel nanomaterials has been increased from dozens of cy-
cles to hundreds of cycles, with a high current density of ~
10 A g−1.
The conductive substrate as a carrier for the active

material is the basis of the binder-free electrode. The
conductive matrix needs to have suitable sites for grow-
ing active materials, and its mechanical properties play a
decisive role in its application. For applications of the
electrodes in wearable and flexible electronic devices,
conductive substrates need to be able to be bent or even
folded multiple times. This is difficult to achieve in con-
ventional electrodes fabricated by the slurry process. The
main reason is that the active material is separated from
the current collector during the bending process, resulting

Fig. 1 The requirements, fabrication methods, advantages, and future development for binder-free electrode
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in the deactivation of the battery. Growing the active mate-
rials directly on a flexible network provides a strong inter-
action and leads to robust electrodes maintaining the high
energy density. These flexible substrates mainly include
metal foam, carbon cloth, and free-standing films of carbon
materials [25].
This review aims to provide an overview of preparation,

application, and outlook of binder-free electrodes for LIBs.
Our goal is to highlight the recent development and im-
provement of binder-free electrodes [26]. The doctor blade
casting and infiltration methods, which are undoubtedly
important to the field of LIBs, will not be included. First,
we introduce the different conductive substrates, which
serve mainly as carriers for the active materials. We follow
with a presentation on the binder-free electrode fabrication
method from the perspectives of chemistry, physics, and
electricity. Subsequently, the application of the binder-free
electrode in the field of the flexible battery is presented. Fi-
nally, the key issues concerning these preparation methods
and their applications are prospected.

Conductive Substrate
The conductive substrate is the current collector with good
electronic conductivity. Therefore, the material is generally
composed of metal or carbon material. Due to manufactur-
ing limitations, metal current collectors are typically fabri-
cated into films, meshes [27], and foams [28]. Metal products
are generally rigid and are not easily recovered after deform-
ation; therefore, they are only suitable for high energy density
batteries of the same configuration as slurry-based batteries.
Copper and aluminum are used as a negative and positive
current collector, respectively, due to the different oxidation
resistance [29]. Metal foam has the advantages of light
weight, large area, three-dimensional structure, and the like,
which is often used for binder-free electrodes [30].
Carbon materials originate from a range of sources

and are very flexible in their preparation [31]. These ma-
terials can be derived from a wide variety of biological
materials in nature, as well as chemically prepared car-
bon nanotubes, graphene, and porous carbon structures
from organic materials [17, 32]. Compared with metal,
some kinds of carbon materials are lighter in weight and
have great flexibility (flexible, foldable, etc.). Carbon
cloth is increasingly applied in energy storage due to its
excellent electrical conductivity and flexibility [33].

Chemical Methods
Thermal Treatment
Thermal treatment is one of the common methods of
preparing a binder-free electrode. This method is to
change the physical and chemical properties of the ma-
terial by means of heating and cooling process. After
heat treatment, the inorganic salt is converted to the
corresponding metal oxide, and the polymer will

dehydrate to form a carbon conductive structure (Fig. 2).
For the preparation of binder-free electrodes, thermal
treatment is generally used to immobilize the active ma-
terial or to construct a self-supporting backbone.
The commercially available structure is utilized as sup-

porting skeleton to immobilize active materials. These
materials consist of metal meshes, carbon fibers, com-
mercial sponges, and biological derivatives and commer-
cial sponge [39], etc. (Fig. 2a). Metallic oxide
nanoparticles can be synthesized on the surface of metal
current collectors via simple thermal oxidation progress
[34] (Fig. 2a1). Without any further treatment, these
current collectors can be used directly as supporting ma-
terials for binder-free LIBs. Iron mesh-supported Fe2O3

shows a very high discharge capacity of 1050mAh g−1

after 200 cycles. Thermal treatment of the conductive
membrane with precursor’s solution of active materials
is a widely developed method for the fabrication of
binder-free electrodes (Fig. 2a2). A representative ex-
ample is that the ultrathin MoS2 nanosheets coated at
the surface of active carbon fiber (ACF) cloth can be fab-
ricated by immersing in the (NH4)2MoS4 solution
followed by annealing. The electrochemical perfor-
mances are demonstrated that the discharge capacity of
971 mAh g−1 is achieved at a current density of 100 mA
g−1 [35]. Thermal treatment of biomass materials is a
simple method for preparation of binder-free electrode.
Ozkan and coworkers carbonized the portobello mush-
room as binder-free LIBs anodes (Fig. 2a3) [32]. At high
temperature, the structure of biomass materials can be
remain, and the naturally presented heteroatoms and
metal ions can dope in the carbon materials, which in-
creases the electrochemical performances such as elec-
tron conductivity and capacity.
The polymer is the main material for constructing the

self-supporting skeleton of the binder-free electrode, and
the skeleton structure is determined by the polymer and
its preparation method (Fig. 2b) [40]. Firstly, for the
common polymers, pyrolysis of polymer-active materials
composite film at 550 °C can prepare binder-free elec-
trode (Fig. 2b1) [36]. The Si/SiOx/PAN composite elec-
trode is prepared by this method [41, 42]. After
annealing, the polyacrylonitrile (PAN) can be converted
to N-doped conductive structure, and the carbon net-
work not only stabilizes the SEI and accommodate the
volume changes but also provide good flexibility and
mechanical strength for the electrode. Similarly, Si/rGO
electrode can be obtained by casting Si, reduced gra-
phene oxide (rGO) and polyvinylpyrrolidone (PVP) sus-
pension onto nickel foam followed by an annealing
process [43]. Secondly, the layer-by-layer (LBL) process
is an attractive way to make complex structures and
nanomaterials. An electrode with multiple layers can
be fabricated by immersing the Ti foil in poly
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(diallyldimethylammonium chloride) (PDDA) solution,
graphene oxide (GO) suspension, PDDA solution, and
aqueous H3PMo12O40 at certain cycles, then followed
by thermal treatment at 500 °C [44]. Such LBL
method can be applied to prepare a binder-free elec-
trode on a large scale. This kind of method is suitable
for making mesoporous anatase TiO2/nickel foam
[45], MoS2 nanosheet/ACF, and multilayer GeO2/rGO
(Fig. 2b2) [37, 46]. Last, binder-free electrodes can be
fabricated by encapsulation of active materials into
polymers and then fabrication to novel nanostructure
(Fig. 2b3). Flexible hierarchical nanofibers mats can
be synthesized by electrospinning and subsequent
thermal treatment.
There are many merits for commercially available and

fabricated structure. The active material is coated on the
surface of the commercially available structure while the

fabricated structure acts as a container to encapsulate
the active material. In contrast to the encapsulation of
active materials, the surface coating makes the more
contact of active materials and electrolyte. Therefore, it
results in the better rate performance but lower initial
Coulombic efficiency and poor cycling performance.

Hydrothermal Treatment
The hydrothermal method is widely used in different dis-
ciplines in past several decades. Currently, this technique
has made great effort in terms of mechanisms interpret-
ation and material fabrication. For the hydrothermal
process, metal ions are dissolved in the solution which
afterwards forms a supersaturated solution at high
temperature and pressure. During this process, crystal
growth occurs at the nucleation point of the substrate.
Comparing to the aggregated particles prepared by

Fig. 2 Thermal treatment for the commercially available structure (a) and fabricated structure (b). a1 Metallic oxide nanoparticles can be
obtained on the surface of an metal structure via a simple thermal oxidation progress [34]. a2 The active materials can be synthesized on the
surface of conductive structure by thermal treatment [35]. a3 Biomass can be carbonized to achieve the carbon architecture [32]. b1 The mixture
of polymer and active materials can be carbonized to achieve the binder-free electrode [36]. b2 Hierarchical structure can be obtained by
multiple processes [37]. b3 Binder-free electrode can be obtained by thermal treatment the electrospinning membrane [38]
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thermal treatment, the hydrothermal method can produce
high-pure, uniform, monodispersed, and controllable
nanoscale materials under mild conditions. The hydro-
thermal process of fine nanostructure has attracted wide-
spread attention in energy storage materials.
An overall synthetic process for the preparation

binder-free electrode using hydrothermal method is
similar to the procedure described in Fig. 3a. Supporting
materials are first obtained. If the supporting materials
are smooth with limited nucleating points, the depos-
ition of active materials on their surface would be pro-
hibited. Generally, the carbon cloth needs acidic or
thermal treatment to become more hydrophilic. Besides,
the pH of the solution should be adjusted by adding a
suitable precipitant to promote the growth of the pre-
cursor on the surface of the substrate. The obtained ma-
terials are thermally treated to obtain the desired
composite while maintaining the nanostructure. Hu,
Zhang, and coworkers reported a scalable method for
the preparation of ZnxCo3-xO4 nanocubes/CNFs (carbon
nano-fibers, CNFs). The cube’s size can be adjusted by
the pH applied in the hydrothermal process [47].
The hydrothermal method can fabricate single and

multiple component [49]. Many morphologies of binder-
free electrodes have been developed, such as TiO2 nano-
rods on carbon nanotube (CNT) scaffold [50], Fe3O4

nanoparticles, NiO nanocones, Ni(OH)2 nanosheets and

Fe3O4/Ni/C nanoplates grown on Ni foam [51–54],
MnO2 nanoflakes on graphene foam [55], and
FeF3·0.33H2O flower-like arrays on carbon fiber [56]. Li
and coworkers grew NiCo2S4 nanotube arrays showing
unique 3D structure, in which NiCo2S4 nanotubes show
5 nm in length and 100 nm in width [57]. Porous
NiCo2O4 nanoneedles grown on 3D graphene network
can be obtained by using NiCl2·6H2O and CoCl2·6H2O
as the precursors [58]. These nanostructures homoge-
neously distribute on the conductive substrate. There-
fore, these composites not only facilitate the electron
transfer and accommodate the volume changes of the
active materials during discharge/charge process, but
also improve the electrochemical properties with high
capacity, high rate capability, and cycling stability for
LIBs. Specifically, Fe3O4 nanoparticle@Ni foam showed
a reversible capacity of 543 mA h g−1 at the current
density of 10 C after more than 2000 cycles [51]. NiO
arrays@Ni foam can deliver a capacity of 969 mAh g−1 at
the current density of 0.5 C and still remain about 605.9
mAh g−1 at 10 C [52].
It is worth noting that hydrothermal method is a good

strategy to achieve the lithiation of metal oxides for cathode
materials. Conventional lithiation requires uniform mixing
of the precursor with Li salt, which is every difficult to ob-
tain the desired binder-free electrodes. Hydrothermal lithia-
tion is a solution method that does not require the

Fig. 3 a The scheme of ZnCoOx/CNF composite fabrication [47]. b The fabrication of cathode electrode using hydrothermal method [48]
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treatment of the precursor, so it is one of the attractive
methods for fabricating the binder-free cathode electrode.
In 2018, Xia et al. prepared the porous LiCoO2 binder-free
cathode with Au-coated stainless steel as substrates by the
hydrothermal lithiation of Co3O4 precursor (Fig. 3b) [48].
This electrode shows excellent rate and cycling perfor-
mances with a capacity of 104.6mAh g−1 at 10 C rate and
the capacity retention of 81.8% after 1000 cycles.

Chemical Bath Deposition
Chemical bath deposition (CBD) is a process of in situ
growth of active materials on the substrate through a
chemical reaction. Comparing with the hydrothermal
method, this synthesis method is easy to scale up and al-
lows nanomaterials to grow at low temperature and am-
bient pressure without using special equipment. Besides,
the CBD and hydrothermal method grow materials on
the surface of substrates via a similar mechanism, so the
requirements for the substrates are very similar. As the
same to the procedure as shown in Fig. 4a, the precursor
of active materials would nucleate and grow by adjusting
the pH and temperature of reactions. For example, 3D

graphene/MnO2 hybrids are prepared by the presence of
3D graphene aerogel in the acidic KMnO4 solution [59].
The morphology of active materials is influenced by

supporting materials, reacting time, and precursor con-
centration (Fig. 4b). The substrate determines the initial
nucleation sites. For example, the morphology of MnO2

is nanosheet and nanoparticle on the substrate of gra-
phene and CNTs, respectively [62, 63]. In addition, the
morphology of active materials on the supporting mater-
ial is influenced by precursor concentration. For ex-
ample, thin Ni(OH)2 nanosheets begin to form and grow
perpendicularly on the surface of nanofibers at low
Ni(NO3)2 concentration (Fig. 4b) [60]. However, with
the increase of Ni salt concentrations, a thick layer of
Ni(OH)2 nanosheets is gradually formed, which may be
attributed to the rapid and homogeneous nucleation of
Ni(OH)2. Therefore, the morphology of active materials
on the supporting material can be various, such as parti-
cles [64], sheath, nanosheet [65], and nanowires [66, 67].
Similar to the electrode prepared by hydrothermal
method, the porous and conductive architecture with
nanoscale materials can provide continuous channels for

Fig. 4 a Schematic illustration of the preparation of 3D graphene/MnO2 hybrid, and illustrations of electrons transfer on 3D graphene/MnO2

hybrid [59]. b CBD method for the fabrication of CNF@Ni(OH)2 [60]. b1–3 Different hybrid membranes with increase of concentrations of
Ni(NO3)2 solution. c Schematic of the synthesis procedure for the PVP@S-SACNT composite [61]
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rapid diffusion of lithium ions and efficient transport of
electrons for fast lithiation/delithiation.
Sulfur, a very promising cathode material, can be synthe-

sized by CBD under mild conditions. The sulfur material is
based on a simple reaction between Na2S2O3 and acids in
an aqueous solution at room temperature. The process is
simple and environmentally benign. When a suitable tem-
plate or surfactant is applied, the special nano-sulfur struc-
ture can be obtained [68]. When the conductive materials
can absorb S2O3

2-, a great quantity of sulfur is generated at
the interphases. Graphene modified by phenyl sulfonated
functional groups allows the uniform deposition of sulfur via
an in situ redox reaction [69]. The binder-free PVP-
encapsulated sulfur electrode is prepared by the in situ
immobilize the sulfur nanoparticles onto the conductive net-
work (Fig. 4c). PVP is an amphiphilic polymer with a hydro-
phobic alkyl chain and hydrophilic amide groups that can be
used as a dispersing agent. When sulfur starts to form after
adding acid into the solution, the hydrophobic nature of
PVP makes it preferentially coat onto the S surface forming
a dense layer to protect polysulfides dissolution [61].

Chemical Vapor Deposition
Chemical vapor deposition (CVD) is a chemical reaction
in which a gaseous substance deposits on the surface of
a hot substrate. This method can produce the uniform
film on the three-dimensional structure and nanowires
with the assistance of catalysts. The CVD process con-
sists of three steps: (1) diffusion and absorption of the
reaction gases on the surface of the hot substrate, (2) re-
actions of the gases at the active site to form a coating
material, and (3) exhaust of the generated gas. By con-
trolling the temperature, pressure, gases ratio and type,
the desired coating material can be obtained.
CVD method can directly grow active materials. An im-

pressive example corresponding to the CVD process was
reported by Tay and coworkers [70]. 3D nickel foam/
CNTs composite is synthesized with nickel foam as the
substrate and ethanol as both precursor and carbon
source. The obtained CNTs serve as substrates for the de-
position of NiO nanosheet growth. Amorphous FeVO4

nanosheet arrays can directly grow on a flexible stainless
steel substrate with VCl3 as the precursor. It can deliver
reversible capacities of 601mAh g−1 and 453mAh g−1 at
the high current density of 8 C and 15 C, respectively [71].
Surface layers prepared by CVD also serve as protective

interfaces between the electrode and the electrolyte. Yang
and coworkers used ethylene as the carbon precursor to
coat active materials through a CVD process, which not
only improves the stability of the structure but also forms
an excellent electronic conductive network. The Si nano-
wires with a carbon coating layer show a good rate per-
formance [72, 73]. In 2016, Cui et al. showed the porous
materials with a thin layer of lithiophilic materials

prepared by CVD method can serve as the scaffold pro-
moting the uniform deposition of Li-ion [74]. This mater-
ial shows a stable cycling performance with a small
overpotential even at a high current density of 3 mA/cm2

during charge and discharge processes.
CVD method is one of the main strategies for the fab-

rication of advanced Si materials. Silicon is the most
promising anode material for next generation LIBs due
to the highest specific capacity of 4200mAh g−1 and low
operation voltage [75]. However, silicon suffers from
huge volume changes, which leads to continuous forma-
tion of solid electrolyte interface (SEI), pulverization,
and capacity fading during cycling processes [76]. In
general, advanced silicon materials can be prepared by
post-treatment of silicon particles or by reduction of sili-
con dioxide. CVD is desirable way to prepare thin film
or nanowire silicon by reducing or pyrolyzing high-
purity silane or silane substitutes. In 2008, Cui et al.
used CVD method to synthesize silicon nanowires (Si
NWs) on the stainless steel with Au nanoparticles as
catalysts and successfully applied it as anode for LIBs
[77]. Silicon nanowires with a diameter of about 89 nm
can accommodate 400% volume change without crack-
ing. In addition, the nanowires are directly grown on the
current collector, and all nanowires actively contribute
to the capacity. Due to the nanostructure, the entire por-
ous electrode has a very large specific surface area and
thus has excellent ion conduction. The nanowire silicon
material can achieve a theoretical capacity of almost
4200 mAh g−1 for the first time at C/20 rate. Although
the diameter of nanowires increased from 89 to 141 nm
after cycling process, the overall structure remained in-
tact. The growth of Si is controlled by the catalysts. The
stainless steel can also act as catalysts for the Si film for-
mation. However, the formation of Si layers on the
current collector can cause severe stress between the Si
layer and the collector. The growth of Si can be inter-
fered at a certain step by controlling the active seeds.
For example, the chemically stable graphene or metal Ge
surface with Au or Sn nanoparticles can serve as seeds
for Si NWs growth [78, 79].

Atomic Layer Deposition
The atomic layer deposition (ALD) method is a vapor-
phase, self-limiting, and layer by layer deposition, which
is similar to the CVD. This method can produce nano-
scale and controllable thin films in an atomic layer-by-
layer deposition. Therefore, the process should consist
of at least two different precursor gases, which can react
with each other [80]. During the ALD process, the first
gas is introduced into the pipe furnace and reacts with
the substrate to form a coating layer with active groups.
After the first gas is fully emitted, the second gas is in-
troduced to react with the first layer (Fig. 5a) [81]. By
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repeating this process, different coating layers can be
achieved. The coating film by ALD is mainly influenced
by the substrate, gases precursors, temperature, etc.
Compared with traditional thin-film deposition method,
ALD can precisely control the coating thickness across
the substrate by chemical reactions, and the coating
layers are not only pinhole-free, dense, and uniform but
also conformal even when deposited on complex 3D
structures. These features of ALD present it as a great
choice for nanotechnology and materials.
ALD prepared electrodes generally have good electro-

chemical properties. TiO2 is the most investigated elec-
trode materials (Fig. 5b, c) [84]. Recently, SnO2 [85],
MoS2 [86], etc. are prepared and successfully used as ac-
tive material for LIBs (Fig. 5c) [87, 88]. Because ALD is a
vapor-phase synthesis method, it can coat a uniform
layer with controllable thickness on the surface or inside
the pores of materials. Kang and coworkers [83] demon-
strated that nanoribbons as active materials in the elec-
trodes allows the electrolyte to be immersed inside the
material, thereby greatly increasing the diffusion rate of
lithium ions. With the assistance of template, the hollow
space of the nanoribbons can be synthesized by ALD with
the tunnel size of nearly 100–200 nm in width and 20–50
nm in height. It allows the electrolyte to easily wet the hol-
low space. The rate performance of TiO2 nanoscale net-
work has increased at least five times at 5 C compared to

that of 100 nm-TiO2 nano-powder. Biener et al. coated
porous electrode with TiO2 layers. It is found that the ma-
terial with thinner coating layer shows better rate per-
formance. When the TiO2 layer thickness increased from
2 to 7 and 20 nm, the capacity decreases from 227 to 214
and 157mAh g−1, respectively [89].
The most general application of ALD in electrochem-

ical storage is to protect the surface stability of elec-
trodes to enhance the electrochemical performance [90].
The uniform Al2O3 coating on TiO2 nanotubes for LIBs
is the most representative example of surface protection
(Fig. 5a) [82]. The coating thickness of the Al2O3 layer
onto the TiO2 nanotube can be controlled by ALD from
0.2, 1 to 10 nm according to the repeated cycles. The 1
nm coating Al2O3 layer can suppress the SEI formation
and undesirable side reactions, which greatly improves
the capacity. In addition, Al2O3 as an artificial layer can
participate in the formation of SEI with Li–Al–O
groups, which are great ionic conductor. Therefore, the
Li-ion conductivity in improved and great rate per-
formance can be achieved. Noked et al. demonstrated
the 14 nm Al2O3 layer can effectively improve the sta-
bility of lithium metal interface by avoiding the reac-
tions with electrolyte, cathode shuttles, etc. [91].
Comparing with the bare lithium metal anode, the
ALD-protected anode can significantly improve cyc-
ling performance.

Fig. 5 a The ALD technique mechanism [81], and two examples for b surface coating [82] and c active materials fabrication [83]
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Electrical Methods
Electroplating
Electroplating is a versatile technique that functions to
improve the surface properties of materials or to prepare
nanoscale structures. The deposition mechanism is that
in the case of an applied electric field, the ions move to
the positive electrode and are reduced on the surface of
the substrate to form a film. The thickness of film is
controlled by the current density and time. Through
post-treatment, the metal film can be oxidized to the
corresponding metal oxide.
Template synthesis is the most popular method for

preparing nanostructures of various materials using elec-
troplating in LIBs. Chen, Xia, and coworkers obtained
porous CoO semisphere arrays using the polystyrene as
the template [92]. Yan, Tong, and coworkers demon-
strated that CoO can coat on the surface of ZnO nano-
rod arrays by electroplating method. The ZnO template
can be removed by treating the obtained electrode at
KOH solution [93].
Electroplated surface layers also serves as a protective

interfaces between the electrode and the electrolyte. Cu/
TiO2 NT/Ti electrode can be prepared via electroplating
Cu on TiO2 NT/Ti film. The prepared materials display
a much higher discharge capacity, cycle stability, and Li+

diffusion coefficient than bare TiO2NT/Ti electrode
[94]. Mulder et al. designed a 3D Ni honeycomb current
collector for stable Li metal anode [95]. By controlling
the porosity of Ni material with polyethylene glycol as
an additive, the Li plating/stripping performance can
prolong to 300 and 200 cycles at 0.5 mAh cm−2 and 1.0
mAh cm−2, respectively, at 1.0 mA cm−2.

Anodization
Anodization is a well-established technique for modify-
ing a layer on the metal surface. Generally, the metal
surface can be thermal treated to form the correspond-
ing oxide protective layer. However, this heating process
often carries out at a high temperature, which changes
the material structure and properties. Therefore, it is ne-
cessary to develop a low temperature method. Anodiza-
tion refers to a technique in which a metal material is
oxidized and precipitated in the electrolyte solution by
applying an anode current at room temperature. Anodi-
zation is popular because of its controllable structure,
economical, and large-area preparation.
Li et al. firstly reported the porous Fe3O4 thin film as

anode material cycled about 100 cycles at the 0.1 C [96].
Subsequently, TiO2 [97], NiO [98], WO3 [99], CuCl
nanoparticles [100], etc. were prepared and showed de-
cent cyclic stability, good ion and electron conductivity,
and enhanced capacity. The NiO@Ni foam can deliver a
reversible capacity up to 705.5 mAh g−1 and 548.1 mAh

g−1 at a current density of 1 A g−1 and 2 A g−1,
respectively.

Electrophoretic Deposition
Electrophoretic deposition (EPD) has been widely used as a
surface coating and film preparation method. The depos-
ition mechanism is that during the process, the charged
particles with small sizes (need to disperse into the solu-
tion) in a suitable suspension migrate towards an electrode
under an applied electric field (Fig. 6a, b). The morphology
of the achieved film is significantly influenced by the elec-
trolyte solution [104]. EPD has the advantages of low cost,
simplicity, green, and controllable operation [105].
An electrode made by EPD shows better electrochem-

ical performances than slurry-coated electrode. Robinson
and coworkers proved that the Co3O4 nanoparticle films
formed by EPD showed better adhesion and cycle per-
formance than the electrode prepared by conventional
methods (Fig. 6a). The EPD can provide a more effective
mixed state between active materials and conductive addi-
tives [101]. It is worth noting that carbon nanotubes, gra-
phene, and other carbon materials together with active
materials can be deposited onto the current collector,
which significantly improves the electron conductivity
[106, 107]. Besides, the porous structure formed during
the EPD process is crucial to accommodate the volume
change during lithium-ion insertion and extraction. Zhao
and coworkers demonstrated that the Si nanoparticle elec-
trode prepared through EPD shows better electrochemical
performance (Fig. 6b) [102, 108].
EPD is able to deposit surface layers composed of either

active or inert materials. These layers serve as protective
interfaces between the electrode and the electrolyte. For
example, the reduced graphene oxide thin film deposited
onto the surface of the electrode to improve the electrical
conductivity and to buffer the volume changes during
charge/discharge processes (Fig. 6c) [103].

Physical Methods
Electrospinning
Electrospinning is a simple and popular technique to
synthesize 1D nanostructures with fiber diameters
ranged from tens of nanometers up to micrometers
[109]. This preparation is difficult to achieve by the ap-
proaches mentioned above. This technique can produce
polymers, organic, and inorganic composites with dense,
hollow, or porous structures [110], from polymer solu-
tions based on electrostatic forces [111]. An electrospin-
ning unit generally consists of a syringe and a needle, a
grounded collector, and a high-voltage supply, as shown
in Fig. 7a, b [117]. During the electrospinning process,
polymer solutions are loaded in the syringe and move
into the needle to form a droplet. When a high voltage
is applied between the needle and the collector, the
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electrostatic force at the surface of droplet would drive it
to elongate to form a fiber. Finally, the solid polymer fi-
bers would deposit onto the collector.
The polymer solutions and needle are the key points

for the success of fiber fabrication. Polymer solution
should reach the minimum viscosity for the formation of
homogeneous fiber structure. The solvent of polymer
should have a lower evaporation rate, which allows the
polymer solidification after leaving the needle. The nee-
dle should be designed with coaxial structure to achieve
hollow or core-shell fiber structure (Fig. 7b). For the co-
axial electrospinning, the core and shell solutions should
be adjusted to be immiscible or non-precipitable. Be-
sides, during the electrospinning process, solution flow
rates, voltage, temperature, distance from needle to the
collector, and diameter of the needle have a huge influ-
ence on the fiber structure.
The obtained electrospun membrane needs further

treatment to be a binder-free electrode. Carbon, ceramic,
or metal nanofibers can be synthesized from the
carbonization of electrospun fibers that contain polymer,
metal salts, or metal atoms, respectively. Their compos-
ites such as metal/C and ceramic/C can be also obtained
from their corresponding mixed precursors followed by
a one-step or multi-step heat treatment. A wide range of
electrospun materials have been investigated for LIBs in-
cluding metal oxides (e.g., TiO2, Fe2O3, ZnO, NiO, CuO,
LiCoO3, Li4Ti5O12, and LiMn2O4) [118, 119], hybrids
[120] (e.g., SnOx/C, SiOx/C, Co3O4/C, SnOx/C, TiO2/C)
[113, 121–130], and polymers (e.g., polyvinyl alcohol

(PVA), PAN and PVP, poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-HFP), and polyethylene
oxide (PEO)) [131].
Conventional electrospinning generally disperses metal

salts and nanoparticles inside the fibers. However, the
nanoparticles can adhere to the outside of the fibers as
well (Fig. 7c). Lan, Yang, and coworker prepared 3D
free-standing spider-web-like membranes with high
mass loading of bismuth (Bi) nanoparticle clusters
followed by carbonization in nitrogen gas [132]. The 3D
Bi/C membrane provides good mechanical properties
and stabilizes the Bi nanoparticles up to 200 cycles.
The architecture of fibers can be optimized to accommo-

date large volume changes and instability of the electrode
materials during cycling process. The adjustment of the
fiber structure can be started from either inside or outside
of the fiber. The internal fiber can be regulated by the poly-
mer solution and post-treatment, while the external fiber
structure is controlled by post-treatment. When the poly-
mer solution contains etchable materials, a porous fiber
structure can be prepared after carbonization and template
etching (Fig. 7d). This porous materials is capable of ac-
commodating higher sulfur and suppressing the polysul-
fides shuttle effects [114]. The polymer can individually
form an active material at the expense of flexibility self-
standing property. This disadvantage can be addressed by
additives. Liu et al. showed the PAN fibers with an appro-
priate amount of CNTs can still be self-standing after sul-
furization [115]. The sulfur only exists in the form of Li2S2
and Li2S3 rather than polysulfides in the sulfurized PAN.

Fig. 6 a Schematic of process for fabrication of binder-free, carbon-free film electrodes [101]. b Schematic fabrication process for the Fe3O4/CNTs/
rGO composite electrode [102]. c Schematic illustration of the synthesis route for rGO/active materials/Ni foam [103]
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Therefore, it shows ultra-stable cycling performance up to
1000 cycles (Fig. 7e).
Alternatively, the post-treatment of the surface of electro-

spun fibers is another way to prepare the high-performance
binder-free electrode (Fig. 7f). After carbonization, the
three-dimensional conductive network is formed to provide
good electronic conductivity. The fiber surface also pro-
vides a large number of sites for the growth of active mate-
rials with easy access to electrolyte [38]. Another post-
treatment is to coat the nanofibers with a protective surface
layer. Generally, the nanoparticles spinning out with the
polymer solution is inevitably exposed at the surface of the
fiber. This part of the material may fall off from fibers dur-
ing the cycling process, so the surface coating is equivalent
to the protection of the fiber [133].
In addition to polymer solution, the needle is also of im-

portance to the fibers design. The core-shell composite

nanofiber can be prepared by a dual nozzle coaxial electro-
spinning setup (Fig. 7g) [116]. This needle can achieve a
great core-shell fiber structure. Besides, hollow fibers can be
prepared by designing the inner and outer solutions. When
the hollow fiber is filled with the active material, there is suf-
ficient space to allow the volume to expand [112].

Vacuum Filtration
The vacuum filtration method is a rapid manufacturing
process to assemble different kinds of nanoscale materials
into the macroscopic film for various applications. This
process is low-cost, rapid, and efficient, which demon-
strates a promising strategy for various functional films.
2D materials can be easily assembled into flexible self-
standing paper-like materials, which can be directly used
as flexible binder-free electrodes in energy storage devices
[134, 135]. In general, the active materials are randomly

Fig. 7 The schemes of a single axial and b coaxial electrospinning [111, 112]. c Inorganic fibers [113]. d Inorganic particles encapsulated carbon
fibers [114]. e The modification of carbon fibers [115]. f Carbon fiber membrane with nanoparticles [38]. g Highly flexible carbon fiber
membrane [116]
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dispersed between the supporting materials. Therefore,
high mechanical strength and flexibility are preserved for
the papers (Fig. 8) [136, 137].
The vacuum filtration features as the following

strengths. Firstly, active materials can adhere on the con-
ductive substrate, leading to the improvement of elec-
tron conductivity. For example, the electron conductivity
of MoS2 can be largely improved; therefore, better rate
performance can be obtained [138, 139]. Secondly, the
large surface area is in favor of the contact between ac-
tive materials and lithium ions, which facilitates the
transportation of Li-ion. When the active material is
added into the 2D material, the interlayer spacing be-
comes large; thus, the electrolyte can be immersed. The
lithium ions are more accessible to the material; thereby,
the interface impedance of material is reduced [140].
Thirdly, the effective material utilization is also facili-
tated by hindering the aggregation of 2D materials [141–
143]. Lastly, the material agglomerations and electrode
instabilities result from the huge volume change of ac-
tive materials during Li insertion/extraction [144, 145].
Supporting sheets can absorb stress induced by volume
expansion, similar to the role of elastic buffer [146, 147].
Different types of nanostructures can be assembled

into 2D materials. For example, the nanoparticles, nano-
tubes, nanosheets, nanorods, etc. can fabricate into the
graphene sheets [148]. When CNTs as additive are as-
sembled into the nanosheets, the restacking of the nano-
sheets can be prevented, and the conductivity of ion and
electron can be greatly increased [149]. The electrode
chemical properties can be enhanced by coating or mix-
ing active materials on other conductive materials and
then assembling into 3D functional materials [150–152].
It is mainly attributed to the synergistic effects that 3D
structure not only serves as a flexible scaffold for
strains/stresses release and volume expansion, but also
offers a three-dimensional conductive architecture with
open channels for electron transfer and Li-ion diffusion.
Besides, pre-protection of active materials is a way to
improve material stability. The surface modified anode
materials in graphene exhibit high capacities, long cycle-
life, and excellent rate performance [153]. The
Mn2P2O7-carbon in graphene electrode delivers a

capacity of 585 mA h g−1 at a current density of 1000
mA g−1. When increasing the current density to 5000
mA g−1, a high capacity of 400 mA h g−1 can be remained
even after 2000 cycles [153].

Physical Vapor Deposition
At certain temperature and airflow rate, the elemental
vapor can be easily deposited onto the porous support-
ing materials [154–156]. Solid sulfur and red P nanopar-
ticles are the typical materials, which can be deposited
into porous carbon materials. The commercialization of
sulfur as cathode materials is blocked by several intrinsic
problems, including low electronic/ionic conductivity,
large volumetric expansion, and shuttle effect of inter-
mediate polysulfides (Li2Sx (4 ≤ x ≤ 8)). Particularly, the
shuttle effect of polysulfides results in transport of sulfur
from cathode to anode and the reaction with Li metal,
which leads to significant capacity loss and safety issues.
So far, the design of porous structure is the basic strat-
egy to suppress the polysulfides shuttle effect, and sulfur
vapor deposition is an effective way for the fabrication of
S/C composite. It is an environmentally friendly,
solvent-free method in which the sulfur powder under-
goes a physical deposition process with no changes of
chemical properties [157]. With proper absorbent in
the structure, the shuttle effect of polysulfides can
also be fixed. Recently, Yang, Zhang, and coworkers
reported Ti3C2Tx paper is a good host for sulfur de-
position (Fig. 9a). This Ti3C2Tx paper shows no
cracks after 25 convexly and concavely bending cycles
(Fig. 9b, c) [158]. Yu and coworkers [159] demon-
strated porous carbon fibers encapsulated with red P
shows high capacity of 2030 mAh g−1 at 0.1 C rate
after 100 cycles. It is worth noting that physical vapor
deposition (PVD) is only one of the procedures of im-
mobilizing S or P onto carbon materials. Therefore,
the most important research direction is how to de-
sign a porous conductive matrix.

Application in Flexible Batteries
Flexible devices, such as wearable displays, sensors,
sportswear, mobile communication devices, rollup dis-
plays, and so on, are one of the important directions for

Fig. 8 The scheme of vacuum filtration process [136]
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intelligent and smart world [160]. The development of
these new devices requires the power of a flexible battery
system [161–163]. However, current advanced pouch
and 18,650 cells cannot be used on flexible devices due
to the rigid material properties. Each component of the
flexible battery, such as electrodes, separator, and solid
electrolyte, must be flexible (Fig. 10a) [164]. The conven-
tional electrode is generally adhered to the metal foil by
a coating method to physically bond the active material
and the conductive agent. During repeated bending and
folding, the active material separates from the current
collector, ending up with deactivation. For example, the
Li4Ti5O12 (LTO)-based electrode folded about 100 cycles
would present the detachment of LTO from Al foil. The
impedance of the electrode increases from the first fold,
and the higher the active material loading, the faster the
impedance increases (Fig. 10b). At the same time, the
pouch cell bending 30° results in serious capacity fade
(Fig. 10c).
There are many strategies to fabricate flexible elec-

trodes. Song et al. reported that coating LTO particles
and Ag nano wires onto the polyethylene terephthalate
(PET) web can greatly improve the electrode flexibility
and stability. The electrical resistance of Ag@LTO@PET
electrode does not change during 1000 folding cycles
(Fig. 10b). Pouch-type Ag@LTO@PET-based half cells
showed great cycling performance with little capacity
decay when the electrode was bent at any angle (Fig.
11c) [165]. The most mature method is to fix the active
material on a flexible substrate. As described in the
“Introduction” section, the direct growth of the active
material on the conductive substrate can improve

battery energy density and rate performance. Herein, we
take the carbon cloth and carbon materials as the ex-
ample to show the application of binder-free electrodes
in flexible devices.
Most carbon materials cannot be used in flexible elec-

tronics. For example, a binder-free electrode based on
graphite paper can only maintain 25 cycles in a bent
state [167]. Comparing with other carbon materials, car-
bon cloth with excellent flexibility and electrical con-
ductivity is one of the most promising materials for the
flexible battery application. Even after the surface modi-
fication of inorganic materials, carbon cloth still shows
excellent flexibility. As shown in Fig. 11a, there are no
apparent changes of the electrode after bending, rolling,
twisting, folding, and crumpling tests. After the mechan-
ical test, the active materials on the carbon cloth can
maintain structural integrity. Also, after 200 bending cy-
cles, the current value slightly decreases from 17.3 to
16.8 mA, which demonstrates great stability (Fig. 11b)
[166].
It is particularly difficult to synthesize flexible carbon

materials. For example, the PAN film becomes much
more brittle and fracture after carbonization, which is
difficult to use in flexible batteries. The ideal carbon ma-
terial, like the clothes we wear, bending and folding
many times can still remain intact. The flexibility of the
material can be greatly improved through reasonable de-
sign such as the addition of functional additives. Wang
et al. reported that the carbonized PAN film with SiO2

filler can fully recover to its original state after repeated
rolling or folding process [114]. When assembled into
the pouch cell, it can withstand at different bending

Fig. 9 a The scheme of fabrication of robust, freestanding, and conductive Ti3C2Tx/S paper. Photographs of freestanding Ti3C2Tx/S paper when
bending b convexly and c concavely, showing good mechanical flexibility similar to that of the pure Ti3C2Tx paper [158]
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angles up to 180°. Yu et al. demonstrated that
Zn(CH3COO)2 assists the uniform carbonization of
PAN, which relieved the stress concentration [130].
The film obtained by this method can return to the
initial state after folding four times (Fig. 12a). When
assembled into the pouch cell, it can light the LED at
any folding angle. When the pouch cell is disas-
sembled, the binder-free electrode remains intact
while the slurry-based electrode is completely
destroyed (Fig. 12b–e).

Conclusions
In conclusion, recent research progress on the prepar-
ation of binder-free electrodes for LIBs has been sum-
marized. The fabrication methods focus on the chemical,
physical, and electrical treatment, such as thermal treat-
ment, hydrothermal treatment, CBD, ALD, CVD; vac-
uum filtration, electrospinning; and electrophoretic
deposition, anodization, electrodeposition. Thermal
treatment is the most commonly used chemical method
to carbonize polymer for free-standing structure or

Fig. 10 a Assembly and bending tests of flexible batteries with flexible electrodes [164]. b Electrical resistance change with folding cycles [165]. c
Capacity retention of folded cells at different angles at 1 C [165]

Fig. 11 a Schematic illustration for the structural features of the flexible SnO2 nanosheets on flexible carbon cloth electrode during the folding (I),
the rolling (II), and twisting (III) tests. b Current-time curves of the composite samples at various bending angles of the 1st and 200th cycles, and
the inset images show the corresponding bending angles for measurement and photographs [166]
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decompose of the precursor of metallic oxide. The
hydrothermal and CBD methods are very attractive due
to accurate control of the size and morphology of nano-
materials. CBD and hydrothermal methods present in
situ growth of active materials on the substrate through a
chemical reaction. CVD is defined as the deposition of a
gas carrier on a heated surface by a chemical reaction,
while the ALD technique is a vapor phase chemical depos-
ition process that is capable of producing high-quality
nanoscale thin films in an atomic layer-by-layer manner.
The vacuum filtration and electrospinning are the repre-
sentative physical methods. The former is a physical
manufacturing process to assemble different materials like
nanoplatelets and nanoparticles into the macroscopic film.
The latter can produce 1D nanoscale materials with fiber
diameters ranged from tens of nanometers up to micro-
meters. The electrical method is a widely used technique
to make coatings and thin films. However, it is not often
used to prepare binder-free electrode. Among these
methods, CVD and CBD are excellent ways to prepare
silicon-based and sulfur-based materials, respectively.
The binder-free electrode shows better electrochemical

performances than the traditional slurry system. The
binder-free electrode can improve ionic and electronic
transportation, cycling performance, and energy density
of the electrodes. In addition, nanoscale materials are
uniformly anchored on the supporting materials, which
can effectively prevent the agglomeration of nanoparti-
cles and mitigate the volumetric expansion during the
repeated cycling process.
The conductive matrix plays a crucial role in the elec-

trochemical properties and performances of the binder-
free electrode. The ultra-flexible film has great potential
to make a big breakthrough in the field of wearable and

flexible devices. However, existing substrates are still un-
able to meet the requirements. The flexible device re-
quires the binder-free electrode to bend and fold for
numerous times with no damage and no separation from
the substrate. According to current research process,
ultra-flexible and ultra-stable carbon materials become
the most promising candidate for next-generation flex-
ible binder-free electrode.
Despite the difficulties, the future is expected. The

uniform and large-scale growth of the active material on
the conductive substrate is one of the necessary condi-
tions for practical application. Fortunately, it is now pos-
sible to achieve. Practical applications need to consider
the basic properties of the electrode in the battery, such
as the initial Coulombic efficiency and voltage profiles.
Therefore, the active materials for both anodes and cath-
odes should be carefully selected. For example, Si, Sn, or
carbon materials serve as promising candidates for
anode materials while the cathode materials may be se-
lected from S matching with Li metal, or the existing Li
metal oxides. In addition, flexible batteries can be
achieved with all of flexible components, such as elec-
trodes, separators, and electrolytes. Although these as-
pects have been studied for a long time, breakthrough is
needed to facilitate the research progress.
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